Well-solvable cases of the QAP with block-structured matrices
نویسندگان
چکیده
We investigate special cases of the quadratic assignment problem (QAP) where one of the two underlying matrices carries a simple block structure. For the special case where the second underlying matrix is a monotone anti-Monge matrix, we derive a polynomial time result for a certain class of cut problems. For the special case where the second underlying matrix is a product matrix, we identify two sets of conditions on the block structure that make this QAP polynomially solvable respectively NP-hard.
منابع مشابه
Linearizable special cases of the QAP
We consider special cases of the quadratic assignment problem (QAP) that are linearizable in the sense of Bookhold. We provide combinatorial characterizations of the linearizable instances of the weighted feedback arc set QAP, and of the linearizable instances of the traveling salesman QAP. As a by-product, this yields a new well-solvable special case of the weighted feedback arc set problem.
متن کاملThe Quadratic Assignment Problem
This paper aims at describing the state of the art on quadratic assignment problems (QAPs). It discusses the most important developments in all aspects of the QAP such as linearizations, QAP polyhedra, algorithms to solve the problem to optimality, heuristics, polynomially solvable special cases, and asymptotic behavior. Moreover, it also considers problems related to the QAP, e.g. the biquadra...
متن کاملUsing well-solvable quadratic assignment problems for VLSI interconnect applications
This paper presents several optimization problems occurring in VLSI interconnect, Networks on Chip (NoC) design and 3D VLSI integration, all possessing closed-form solutions obtained by well-solvable Quadratic Assignment Problems (QAP). The first type of problems deals with the optimal ordering of signals in a bus bundle such that the switching power, delay and noise interference areminimized.W...
متن کاملThe (R,S)-symmetric and (R,S)-skew symmetric solutions of the pair of matrix equations A1XB1 = C1 and A2XB2 = C2
Let $Rin textbf{C}^{mtimes m}$ and $Sin textbf{C}^{ntimes n}$ be nontrivial involution matrices; i.e., $R=R^{-1}neq pm~I$ and $S=S^{-1}neq pm~I$. An $mtimes n$ complex matrix $A$ is said to be an $(R, S)$-symmetric ($(R, S)$-skew symmetric) matrix if $RAS =A$ ($ RAS =-A$). The $(R, S)$-symmetric and $(R, S)$-skew symmetric matrices have a number of special properties and widely used in eng...
متن کاملRobotic-Cell Scheduling: Special Polynomially Solvable Cases of the Traveling Salesman Problem on Permuted Monge Matrices
In this paper, we introduce the 1− K robotic-cell scheduling problem, whose solution can be reduced to solving a TSP on specially structured permuted Monge matrices, we call b-decomposable matrices. We also review a number of other scheduling problems which all reduce to solving TSP-s on permuted Monge matrices. We present the important insight that the TSP on b-decomposable matrices can be sol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 186 شماره
صفحات -
تاریخ انتشار 2015